3.58 \(\int \frac {1}{(a+a \cos (c+d x))^2} \, dx\)

Optimal. Leaf size=55 \[ \frac {\sin (c+d x)}{3 d \left (a^2 \cos (c+d x)+a^2\right )}+\frac {\sin (c+d x)}{3 d (a \cos (c+d x)+a)^2} \]

[Out]

1/3*sin(d*x+c)/d/(a+a*cos(d*x+c))^2+1/3*sin(d*x+c)/d/(a^2+a^2*cos(d*x+c))

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 55, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {2650, 2648} \[ \frac {\sin (c+d x)}{3 d \left (a^2 \cos (c+d x)+a^2\right )}+\frac {\sin (c+d x)}{3 d (a \cos (c+d x)+a)^2} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^(-2),x]

[Out]

Sin[c + d*x]/(3*d*(a + a*Cos[c + d*x])^2) + Sin[c + d*x]/(3*d*(a^2 + a^2*Cos[c + d*x]))

Rule 2648

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> -Simp[Cos[c + d*x]/(d*(b + a*Sin[c + d*x])), x]
/; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2650

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Cos[c + d*x]*(a + b*Sin[c + d*x])^n)/(a*
d*(2*n + 1)), x] + Dist[(n + 1)/(a*(2*n + 1)), Int[(a + b*Sin[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d},
 x] && EqQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rubi steps

\begin {align*} \int \frac {1}{(a+a \cos (c+d x))^2} \, dx &=\frac {\sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac {\int \frac {1}{a+a \cos (c+d x)} \, dx}{3 a}\\ &=\frac {\sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac {\sin (c+d x)}{3 d \left (a^2+a^2 \cos (c+d x)\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 53, normalized size = 0.96 \[ \frac {\left (3 \sin \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {3}{2} (c+d x)\right )\right ) \cos \left (\frac {1}{2} (c+d x)\right )}{3 a^2 d (\cos (c+d x)+1)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])^(-2),x]

[Out]

(Cos[(c + d*x)/2]*(3*Sin[(c + d*x)/2] + Sin[(3*(c + d*x))/2]))/(3*a^2*d*(1 + Cos[c + d*x])^2)

________________________________________________________________________________________

fricas [A]  time = 1.06, size = 49, normalized size = 0.89 \[ \frac {{\left (\cos \left (d x + c\right ) + 2\right )} \sin \left (d x + c\right )}{3 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

1/3*(cos(d*x + c) + 2)*sin(d*x + c)/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)

________________________________________________________________________________________

giac [A]  time = 0.76, size = 31, normalized size = 0.56 \[ \frac {\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 3 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{6 \, a^{2} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))^2,x, algorithm="giac")

[Out]

1/6*(tan(1/2*d*x + 1/2*c)^3 + 3*tan(1/2*d*x + 1/2*c))/(a^2*d)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 32, normalized size = 0.58 \[ \frac {\frac {\left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3}+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 d \,a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+a*cos(d*x+c))^2,x)

[Out]

1/2/d/a^2*(1/3*tan(1/2*d*x+1/2*c)^3+tan(1/2*d*x+1/2*c))

________________________________________________________________________________________

maxima [A]  time = 1.10, size = 46, normalized size = 0.84 \[ \frac {\frac {3 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {\sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}}{6 \, a^{2} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

1/6*(3*sin(d*x + c)/(cos(d*x + c) + 1) + sin(d*x + c)^3/(cos(d*x + c) + 1)^3)/(a^2*d)

________________________________________________________________________________________

mupad [B]  time = 0.33, size = 30, normalized size = 0.55 \[ \frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+3\right )}{6\,a^2\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a + a*cos(c + d*x))^2,x)

[Out]

(tan(c/2 + (d*x)/2)*(tan(c/2 + (d*x)/2)^2 + 3))/(6*a^2*d)

________________________________________________________________________________________

sympy [A]  time = 0.90, size = 44, normalized size = 0.80 \[ \begin {cases} \frac {\tan ^{3}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{6 a^{2} d} + \frac {\tan {\left (\frac {c}{2} + \frac {d x}{2} \right )}}{2 a^{2} d} & \text {for}\: d \neq 0 \\\frac {x}{\left (a \cos {\relax (c )} + a\right )^{2}} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))**2,x)

[Out]

Piecewise((tan(c/2 + d*x/2)**3/(6*a**2*d) + tan(c/2 + d*x/2)/(2*a**2*d), Ne(d, 0)), (x/(a*cos(c) + a)**2, True
))

________________________________________________________________________________________